
Orange Textable v1.3a4 documentation
Release 1.3a4

2012-2013 LangTech Sarl

December 07, 2013

Contents

i

ii

Orange Textable v1.3a4 documentation, Release 1.3a4

Textable is an add-on for Orange data mining software package. It enables users to build data tables on the basis of
text data, by means of a flexible and intuitive interface. It offers in particular the following features:

• import text data from various sources

• apply systematic recoding operations

• apply analytical processes such as segmentation and annotation

• manually, automatically or randomly select unit subsets

• build concordances and collocation lists

• compute quantitative indices such as frequency and complexity measures

Textable was designed and implemented by LangTech Sarl on behalf of the department of language and information
sciences (SLI) at the University of Lausanne.

Contents 1

http://orange.biolab.si/
http://langtech.ch
http://www.unil.ch/sli
http://www.unil.ch

Orange Textable v1.3a4 documentation, Release 1.3a4

2 Contents

CHAPTER 1

Installation

To install Orange Textable add-on for Orange from PyPi run:

pip install Orange-Textable

To install it from source code run:

python setup.py install

Orange Textable can also be installed directly from within Orange Canvas, using the Add-ons manager (menu Options
> Add-ons).

3

https://pypi.python.org/pypi/Orange-Textable

Orange Textable v1.3a4 documentation, Release 1.3a4

4 Chapter 1. Installation

CHAPTER 2

Getting started

This part of the documentation introduces the basic usage patterns of Orange Textable. It is meant to be read in the
indicated order.

2.1 Segmentations

Segmentations are at the heart of Orange Textable. Start learning about them.

2.1.1 Strings, segments, and segmentations

The main purpose of Orange Textable is to build tables based on text strings. As we will see, there are several methods
for importing text strings, the simplest of which is keyboard input using widget Text Field (see also Keyboard input
and segmentation display). Whenever a new string is imported, it is assigned a unique identification number (called
string index) and stays in memory as long as the widget that imported it.

Consider the following string of 16 characters (note that whitespace counts as a character too), and let us suppose that
its string index is 1:

Character a s i m p l e e x a m p l e
Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In this context, a segment is basically a substring of characters. Every segment has an address consisting of three
elements:

1. string index

2. initial position within the string

3. final position

In the case of a simple example, address (1, 3, 8) refers to substring simple, (1, 12, 12) to character a, and (1, 1, 16) to
the entire string. The substring corresponding to a given address is called the segment’s content.

A segmentation is an ordered list of segments. For instance, segmentation ((1, 1, 1), (1, 3, 8), (1, 10, 16)) contains 3
word segments, ((1, 1, 1), (1, 2, 2), ..., (1, 16, 16)) contains 16 character segments, and ((1, 1, 16)) contains a single
segment covering the whole string.

As shown by the word segmentation example, every character in the string needs not be included in a segment.
Moreover, a single character may belong to several segments simultaneously, as in ((1, 1, 1), (1, 1, 8), (1, 3, 8), (1, 3,

5

Orange Textable v1.3a4 documentation, Release 1.3a4

16), (1, 10, 16), (1, 3, 8)). This also shows that the order of segments in a segmentation can diverge from the order of
the corresponding substrings in the string. Exercise 1: What is the content of each of the 6 segments in the previous
example? (solution)

In the previous examples, all the segments of a given segmentation refer to the same string. However, a segmentation
may contain segments belonging to several distinct strings. Thus, if string another example has string index 2, seg-
mentation ((2, 1, 7), (1, 3, 16)) is perfectly valid. Exercise 2: What is the content of the segments in the previous
example? (solution)

In order to store segmentations and transmit them between widgets, Orange Textable uses the Segmentation data type.
Aside from the segment addresses, this data type associates a label with each segmentation, i.e. an arbitrary string used
to identify the segmentation among others. 1 Solution to exercise 1: a, a simple, simple, simple example, example,
simple (in this order). (back to the exercise) Solution to exercise 2: another, simple example. (back to the exercise)

2.1.2 Keyboard input and segmentation display

Typing text in a Text Field widget is the simplest way to import a string in Orange Textable. This widget has no input
connexions, and emits in output a segmentation containing a single segment whose address points to the entire string
that was typed. This segmentation is assigned the label specified in the Output segmentation label field (see figure 1
below):

Figure 2.1: Figure 1: Typing a simple example in widget Text Field.

This widget’s simplicity makes it most adequate for pedagogic purposes. Later, we will discover other, more powerful
ways of importing strings.

The Display widget can be used to visualize the details of a segmentation. By default, it shows the segmentation’s
label followed by each successive segment’s address and content. A segmentation sent by a Text Field instance will
contain a single segment covering the whole string (see figure 2 below).

By default, Display passes its input data without modification to its output connexions. It is very useful for viewing
intermediate results in an Orange Textable scheme and making sure that other widgets process data as expected.

1 As we will see later, the Segmentation data type can also store annotations associated with segments.

6 Chapter 2. Getting started

Orange Textable v1.3a4 documentation, Release 1.3a4

Figure 2.2: Figure 2: Viewing a simple example in widget Display.

2.1.3 Merging segmentations together

Computerized text analysis often implies consolidating various text sources into a single corpus. In the framework of
Orange Textable, this amounts to grouping segmentations together, and it is the purpose of the Merge widget.

To try out this widget, create on the canvas two instances of Text Field, an instance of Merge and an instance of Display
(see figure 1 below). Type a different string in each Text Field instance (e.g. a simple example and another example)
and assign it a distinct label (e.g. text_string and text_string2). Eventually, connect the instances as shown on figure
1.

The interface of widget Merge (see figure 2 below) illustrates a feature shared by most Orange Textable widgets: the
Advanced settings checkbox triggers the display of more complex controls offering more possibilities to the user. For
now we will stick to the basic settings and leave the box unchecked.

Section Ordering of the widget’s interface lets the user view the labels of incoming segmentations and control the
order in which they will appear in the output segmentation (by selecting them and clicking on Move Up / Down). The
Output segmentation label can be set in section Options. We will return later to the purpose of checkbox Import
labels with key; leave it unchecked for now.

Figure 3 above shows the resulting merged segmentation, as displayed by widget Display. As can be seen, Merge
makes it easy to concatenate several strings into a single segmentation. If the incoming segmentations contained
several segments, each of them would appear in the output segmentation, in the order specified under Ordering (and,
within each incoming segmentation, in the original order of segments). Exercise: Can you add a new instance of
Merge to the scheme illustrated on figure 1 above and modify the connections (but not the configuration of existing
widgets) so that the segmentation given in figure 4 below appears in the Display widget? (solution) Solution: (back
to the exercise)

2.1.4 A note on regular expressions

Orange Textable widgets rely heavily on regular expressions (or regexes), which are essentially a body of conventions
for describing a set of strings by means of a single string. These conventions are widely documented in books and on
the Internet, so we will not give here yet another introduction to this topic. Nevertheless, a basic knowledge of regexes
is required to perform any non-trivial task with Orange Textable, and more advanced knowledge to fully exploit the
software’s possibilities.

The syntax of regexes is partly standardized, but some variations remain. Orange Textable uses Python regexes, for
which Python documentation is the best source of information. In particular, it features a good introduction to regexes.
A first reading might be limited to the following sections:

• Simple Patterns

• More Metacharaters

2.1. Segmentations 7

http://docs.python.org/2/howto/regex.html
http://docs.python.org/2/howto/regex.html#simple-patterns
http://docs.python.org/2/howto/regex.html#more-metacharacters

Orange Textable v1.3a4 documentation, Release 1.3a4

Figure 2.3: Figure 1: Grouping a simple example with another example using widget Merge.

8 Chapter 2. Getting started

Orange Textable v1.3a4 documentation, Release 1.3a4

Figure 2.4: Figure 2: Interface of widget Merge.

Figure 2.5: Figure 3: Merged segmentation.

2.1. Segmentations 9

Orange Textable v1.3a4 documentation, Release 1.3a4

Figure 2.6: Figure 4: The segmentation requested in the exercise.

Figure 2.7: Figure 5: Solution to the exercise.

10 Chapter 2. Getting started

Orange Textable v1.3a4 documentation, Release 1.3a4

Also recommended are the following:

• Compilation Flags

• Lookahead Assertions

• Greedy vs. Non-Greedy

2.1.5 Segmenting data into smaller units

We have seen previously how to combine several segmentations into a single one. We will often be performing the
inverse operation: create a segmentation whose segments are parts of another segmentation’s segments. Typically, we
will be segmenting strings into words, characters, or any kind of text units that will be later counted, measured, and so
on. This is precisely the purpose of widget Segment.

To try it out, create a new scheme with an instance of Text Field connected to an instance of Segment, itself connected
to an instance of Display (see figure 1 below). In what follows, we will suppose that the string typed in Text Field is a
simple example.

Figure 2.8: Figure 1: A scheme for testing the Segment widget

In its basic form (i.e. with Advanced settings unchecked, see figure 2 below), Segment takes a single parameter (aside
from the Output segmentation label), namely a regex. The widget then looks for all matches of the regex pattern in
each successive input segment, and creates for every match a new segment in the output segmentation.

For instance, the regex \w+ divides each incoming segment into sequences of alphanumeric character (and
underscore)–which in our case amounts to segmenting a simple example into three words. To obtain a segmenta-
tion into letters (or to be precise, alphanumeric characters or underscores), simply use \w.

Of course, queries can be more specific. If the relevant unit is the word, regexes will often use the \b anchor, which rep-
resents a word boundary. For instance, the words that contain less than 4 characters can be retrieved with \b\w{1,3}\b,
those ending in -tion with \b\w+tion\b, and the flexion of retrieve with \bretriev(e|es|ed|ing)\b.

2.1.6 Hierarchical segmentations and performance issues

When widget Segment is applied to real, much longer texts than a simple example, using such general regexes as \w+
or \w may result in the creation of a huge number of segments. Creating and manipulating such segmentations can
slow down excessively the execution of Orange Textable, or even lead to memory overflow.

However, it is sometimes necessary to segment large texts into words or letters, for instance in order to examine
their frequency distribution. In that case, if hardware allows it, a lot of time can be saved at the expense of memory
usage. Indeed, the cumulated time required to successively create several ever more fine-grained segmentations (for
instance into lines, then words, then letters) is usually spectacularly shorter than the time required to produce the most
fine-grained segmentation directly (see figure 1 below).

The situation is different when word or letter segmentation are conceived as intermediate steps toward the creation
of a segmentation containing only selected words or letters. In that case, it is much more efficient (in memory and
execution time) to use a single instance of Segment with a regex identifying only the desired words, as seen previously
with the example of \bretriev(e|es|ed|ing)\b.

2.1. Segmentations 11

http://docs.python.org/2/howto/regex.html#compilation-flags
http://docs.python.org/2/howto/regex.html#lookahead-assertions
http://docs.python.org/2/howto/regex.html#greedy-versus-non-greedy

Orange Textable v1.3a4 documentation, Release 1.3a4

Figure 2.9: Figure 2: Interface of the Segment widget, configured for word segmentation

Figure 2.10: Figure 1: Chaining Segment instances to reduce execution time.

12 Chapter 2. Getting started

Orange Textable v1.3a4 documentation, Release 1.3a4

2.1.7 Partitioning segmentations

There are many situations where we might want so selectively in- or exclude segments from a segmentation. For
instance, a user might be want to exclude from a word segmentation all those that are less than 4 letters long. The
Select widget is tailored for such tasks.

The widget’s interface (see figure 1 below) offers a choice between two modes: Include and Exclude. Depending on
this parameter, incoming segments that satisfy a given condition will be either included in or excluded from the output
segmentation. By default (i.e. when the Advanced settings box is unchecked), the condition is specified by means of
a regex, which will be applied to each incoming segment successively. (For now, the option Annotation key: (none)
can be ignored.)

Figure 2.11: Figure 1: Excluding short words with widget Select.

In the example of figure 1, the widget is configured to exclude all incoming segments containing no more than 3
letters. Note that without the beginning of segment and end of segment anchors (^ and $), all words containing at least
a sequence of 1 to 3 letters–i.e. all the words–would be excluded.

Note that Select automatically emits a second segmentation containing all the segments that have been discarded from
the main output segmentation (in the case of figure 1 above, that would be all words less than 4 letters long). This
feature is useful when both the selected and the discarded segments are to be further processed on distinct branches.
By default, when Select is connected to another widget, the main segmentation is being emitted. In order to send
the segmentation of discarded segments instead, right-click on the outgoing connexion and select Reset Signals (see
figure 2 below).

This opens the dialog shown on figure 3 below, where the user can “drag-and-drop” from the gray box next to Dis-
carded data up to the box next to Segmentation, thus replacing the existing green connexion. Clicking OK validates
the modification and sends the discarded data through the connexion.

2.1. Segmentations 13

Orange Textable v1.3a4 documentation, Release 1.3a4

Figure 2.12: Figure 2: Right-clicking on a connexion and requesting to Reset Signals.

Figure 2.13: Figure 3: This dialog allows the user to select a non-default connexion between two widgets.

2.1.8 Using a segmentation to filter another

In some cases, the number of forms to be selectively included in or excluded from a segmentation is too large for using
the Select widget. A typical example is the removal of “stopwords” from a text: in English for instance, although the
list of such words is finite, it is too long to try to encode it by means of a regex (cf. an example of such a list).

The purpose of widget Intersect is precisely to solve that kind of problem. It takes two segmentations in input and lets
the user include in or exclude from the first (source) segmentation those segments whose content is the same as that of
a segment in the second (filter) segmentation. The widget’s basic interface is shown on figure 1 below).

Similarly to widget Select, user must choose between modes Include and Exclude. The next step is to specify which
incoming segmentation plays the role of the Source segmentation and the Filter segmentation. (Here again, we will
ignore the Annotation key option for the time being.)

In order to try out the widget, set up a scheme similar to the one shown on figure 2 below). The first instance of Text
Field contains the text to process (for instance the Universal Declaration of Human Rights), while the second instance,
Text Field (1), contains the list of English stopwords mentioned above. Both instances of Segment produce a word
segmentation with regex \w+; the only difference in their configuration is the output segmentation label , i.e. words
for Segment and stopwords for Segment (1). Finally, the instance of Intersect is configured as shown on figure 1 above.

The content of the first segments of the resulting segmentation is:

PREAMBLE Whereas recognition inherent dignity equal inalienable rights members human family foun-
dation freedom justice peace world ...

Exercise: Based on an instance of Text Field, produce a segmentation containing all words less than 4 letters long that
appear at the beginning of each line, excluding I, you, he, she, we. (solution) Solution:

Figure 3 below shows a possible solution. The 4 instances in the lower part of the scheme (Text Field (1), Segment
(1), Intersect, and Display) are configured as in figure 2 above–with Text Field (1) containing the list of pronouns to
exclude.

The difference lies in the addition of a Segment instance in the upper branch. In this branch, the first instance (Segment)

14 Chapter 2. Getting started

http://members.unine.ch/jacques.savoy/clef/englishST.txt
http://www.un.org/en/documents/udhr/

Orange Textable v1.3a4 documentation, Release 1.3a4

Figure 2.14: Figure 1: Interface of widget Intersect configured for stopword removal.

Figure 2.15: Figure 2: Example scheme for removing stopword using widget Intersect .

2.1. Segmentations 15

Orange Textable v1.3a4 documentation, Release 1.3a4

produces a segmentation into lines with regex .+ while Segment (2) extracts the first word of each line, provided it is
shorter than 4 letters (regex ^\w{1,3}\b*). Intersect eventually takes care of excluding the pronouns listed above.

Figure 2.16: Figure 3: A possible solution.

(back to the exercise)

2.2 Tables

Segmentations are to tables what a means is to an end. In this section, you will learn how to go from the ones to the
others.

2.2.1 From segmentations to tables

The main purpose of Orange Textable is to build tables based on texts. Central to this process are the segmentations
we have learned to create and manipulate earlier. Indeed, Orange Textable provides a number of widgets for table
construction, and they all operate on the basis of one or more segmentations.

For the time being, we will focus on the construction of frequency tables, which are very common in computerized
text analysis and which will serve as introduction to other types of tables. For the sake of simplicity, consider first the
segmentation of a simple example into letters. Counting the frequency of each letter type yields a table such as the
following:

Table 2.1: Table 1: Frequency of letter
types.

a s i m p l e x
2 1 1 2 2 2 3 2

More often, we will be interested in comparing frequency across several contexts. For instance, if the word segmenta-
tion of a simple example is also available, it may be used together with the letter segmentation to produce a so-called
contingency table (or document–term matrix):

16 Chapter 2. Getting started

Orange Textable v1.3a4 documentation, Release 1.3a4

Table 2.2: Table 2: Frequency of letters within words.

a s i m p l e x
a 1 0 0 0 0 0 0 0
simple 0 1 1 1 1 1 1 0
example 1 0 0 1 1 1 2 1

In a real application, rows could correspond to the writings of an author and columns to selected prepositions, for
instance. The general idea is to determine the number of occurrences of various units in various contexts. Such data
can then further analyzed by means of a statistical test (aiming at answering the question “does the distribution of units
depend on contexts”) or a graphical representation (making it possible to visualize the attraction or repulsion between
specific units and contexts).

2.2.2 Converting between table formats

Orange Canvas has a “native” type for representing data tables, namely ExampleTable. However, this type does not
support Unicode well, which is a serious limitation in the perspective of text processing. To overcome this issue (as
much as possible), Orange Textable defines its own table representation format, simply called Table.

Every table construction widget in Orange Textable emits data in Table format. Instances of these widget must then
be connected with an instance of Convert, which has mainly two purposes:

• It converts data in Orange Textable’s Table format to the native ExampleTable format of Orange Canvas, which
makes it possible to use the other widgets of Orange Canvas for visualizing, modifying, analyzing, etc. tables
built with Orange Textable.

• It exports data in Table format to text files, in tab-delimited format, typically in order to import them later in
a third party data analysis software package; at the time of writing, this scenario is the only way to correctly
visualize a table containing data encoded in Unicode.

As shown on figure 1 below, section Conversion of the widget’s interface lets the user choose the encoding of the
ExampleTable object produced in output (Orange table encoding); variants of Unicode should be avoided here since
they are currently not well supported by other widgets in Orange Canvas.

The encoding for text file export can be selected in the Export section (Output file encoding); in this case there are no
counter-indications to the use of Unicode. Checkbox Include Orange headers triggers inclusion of additional table
headers in the case where the output file should be later re-imported in Orange Canvas. Export proper is performed by
clicking the Export button and selecting the output file in the dialog that appears.

The take-home message here is this: when you create an instance of a table construction widget, you may system-
atically create a new instance of Convert and connect them together. Usually, moreover, you will want to connect
the Convert instance to a Data Table instance (from the Data tab of Orange Canvas) in order to view the table just
built–except in the case where it contains Unicode data that wouldn’t display correctly in Data table.

2.2.3 Counting segment types

Widget Count takes in input one or more segmentations and produces frequency tables such as tables 1 and 2 here.
To try it out, create a scheme such as illustrated on figure 1 below. As usual, we will suppose that the Text Field
instance contains a simple example. The Segment instance is configured for letter segmentation (Regex: \w and
Output segmentation label: letters). The default configuration of the instances of Convert and Data Table (from the
Data tab of Orange Canvas) needs not be modified for this example.

Basically, the purpose of widget Count is to determine the frequency of segment types in an input segmentation. The
label of that segmentation must be indicated in the Segmentation menu of section Units in the widget’s interface,

2.2. Tables 17

Orange Textable v1.3a4 documentation, Release 1.3a4

Figure 2.17: Figure 1: Basic interface of widget Convert.

Figure 2.18: Figure 1: Scheme for testing the Count widget.

18 Chapter 2. Getting started

Orange Textable v1.3a4 documentation, Release 1.3a4

while other controls may be left in their default state for now (see figure 2 below). Clicking Compute then double-
clicking the Data Table instance should display essentially the same data as table 1 here (with possible variations in
the order of columns).

Figure 2.19: Figure 2: Counting the frequency of letter types with widget Count.

Note that checkbox Compute automatically is unchecked by default so that the user must click on Compute to trigger
computations. The motivation for this default setting is that table construction widgets can be quite slow when operat-
ing on large segmentations, and it can be annoying to see computations starting again whenever an interface element
is modified.

To obtain the frequency of letter bigrams (i.e. pairs of successive letters), simply set parameter Sequence length to
2 (see table 1 below). If the value of this parameter is greated than 1, the string specified in field Intra-sequence
delimiter is inserted between successive segments for the sake of readability–which is more useful when segments are
longer than individual letters. Note that in this example, word boundaries are not taken into account–nor even known,
in fact–which is why bigrams as and ee have a nonzero frequency.

Table 2.3: Table 1: Letter bigram frequency.

as si im mp pl le ex xa am
1 1 1 2 2 2 1 1 1

2.2.4 Counting in specific contexts

In preparation.

2.2. Tables 19

Orange Textable v1.3a4 documentation, Release 1.3a4

2.3 Annotations

Annotations let you go beyond what’s in the text.

2.3.1 Annotations and their uses

In preparation.

2.3.2 Annotating by merging

In preparation.

2.3.3 Converting XML markup to annotations

In preparation.

2.3.4 Exploiting annotations

In preparation.

20 Chapter 2. Getting started

CHAPTER 3

Widget reference

This part of the documentation explains the effect of every control of each Orange Textable widget.

Orange Textable introduces mainly two new data types in Orange Canvas: Segmentation and Table. Widgets making
up Orange Textable are grouped into 4 main categories based on their input and output data types:

3.1 Text import widgets

Widgets of this category take no input and emit Segmentation data. Their purpose is to import text data in Orange
Canvas, either from the keyboard (Text Field), from files (Text Files), or from the Internet (URLs).

3.1.1 Text Field

In preparation.

3.1.2 Text Files

In preparation.

3.1.3 URLs

In preparation.

3.2 Segmentation processing widgets

Widgets of this category take Segmentation data in input and emit data of the same type. Some of them (Preprocess
and Recode) generate modified text data. Others (Merge, Segment, Select, Intersect and Extract XML) do not generate
new text data but only new Segmentation data. Display, finally, is mainly used to visualize the details of a given
Segmentation object (content and address of segments, as well as their possible annotations).

21

Orange Textable v1.3a4 documentation, Release 1.3a4

3.2.1 Preprocess

In preparation.

3.2.2 Recode

In preparation.

3.2.3 Merge

In preparation.

3.2.4 Segment

In preparation.

3.2.5 Select

In preparation.

3.2.6 Intersect

In preparation.

3.2.7 Extract XML

In preparation.

3.2.8 Display

In preparation.

3.3 Table construction widgets

Widgets of this category take Segmentation data in input and emit Table data. They are thus ultimately responsible for
converting text to tables, either by counting items (Count), by measuring their length (Length), by quantifying their
diversity (Variety), or by exploiting the annotations associated with them (Annotation). Finally, widget Context makes
it possible to build concordances and collocation lists.

3.3.1 Count

In preparation.

22 Chapter 3. Widget reference

Orange Textable v1.3a4 documentation, Release 1.3a4

3.3.2 Length

In preparation.

3.3.3 Variety

In preparation.

3.3.4 Annotation

In preparation.

3.3.5 Context

In preparation.

3.4 Table conversion/export widget

The only widget in this category, Convert, takes Table data in input and emits ExampleTable data for further process-
ing with Orange Canvas. It also makes it possible to apply various standard transforms to a table, such as sorting,
normalizing, etc., as well as to export its contents to a file.

3.4.1 Convert

In preparation.

3.4. Table conversion/export widget 23

Orange Textable v1.3a4 documentation, Release 1.3a4

24 Chapter 3. Widget reference

CHAPTER 4

Cookbook

In preparation.

25

Orange Textable v1.3a4 documentation, Release 1.3a4

26 Chapter 4. Cookbook

CHAPTER 5

Case studies

In preparation.

27

